VEHICLE DYNAMICS CONTROL (VDC)
1. General Description

A: SPECIFICATION

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification or Identification</th>
</tr>
</thead>
</table>
| ABS wheel speed sensor gap (for reference) | Front 0.77 — 1.43 mm (0.030 — 0.056 in)
Rear 0.64 — 1.56 mm (0.025 — 0.061 in) |
| ABS wheel speed sensor (marks, color) | Front RH K1 (White)
LH K2 (Yellow)
Rear RH K5 (White)
LH K6 (Yellow) |
| Yaw rate & lateral G sensor | Lateral G sensor voltage 2.5 ±0.2 V |
| VDCCM&H/U Identification | WAGON OUTBACK 3.0 R G5 |
General Description

VEHICLE DYNAMICS CONTROL (VDC)

B: COMPONENT

1. ABS WHEEL SPEED SENSOR

(1) Front ABS wheel speed sensor (4) Hub unit bearing
(2) Front housing (5) Magnetic encoder
(3) Rear ABS wheel speed sensor

Tightening torque: N·m (kgf-m, ft-lb)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>7.5 (0.76, 5.5)</td>
</tr>
<tr>
<td>T2</td>
<td>33 (3.4, 24)</td>
</tr>
</tbody>
</table>

VDC-3
General Description

VEHICLE DYNAMICS CONTROL (VDC)

2. YAW RATE AND LATERAL G SENSOR

(1) Yaw rate & lateral G sensor (2) Bracket

Tightening torque: N·m (kgf-m, ft-lb)
T: 7.5 (0.76, 5.5)

3. STEERING ANGLE SENSOR

(1) Steering angle sensor
C: CAUTION

- Wear appropriate work clothing, including a cap, protective goggles and protective shoes when performing any work.
- Remove contamination including dirt and corrosion before removal, installation or disassembly.
- Keep the disassembled parts in order and protect them from dust and dirt.
- Before disconnecting connectors of sensors or units, be sure to disconnect the ground cable from battery.
- Before removal, installation or disassembly, be sure to clarify the failure. Avoid unnecessary removal, installation, disassembly and replacement.
- Vehicle components are extremely hot after driving. Be wary of receiving burns from heated parts.
- Be sure to tighten fasteners including bolts and nuts to the specified torque.
- Place shop jacks or rigid racks at the specified points.

(1) VDC control module and hydraulic control unit (VDCCM&H/U) (5) Rear LH outlet (10) Pressure sensor
(2) Clip (6) Secondary inlet (11) Damper
(3) Bracket (7) Primary inlet
(4) Rear RH outlet (8) Front LH outlet (9) Front RH outlet

Tightening torque: N·m (kgf-m, ft-lb)
T: 33 (3.4, 24)
General Description

VEHICLE DYNAMICS CONTROL (VDC)

D: PREPARATION TOOL

1. SPECIAL TOOL

<table>
<thead>
<tr>
<th>ILLUSTRATION</th>
<th>TOOL NUMBER</th>
<th>DESCRIPTION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18482AA010</td>
<td>CARTRIDGE</td>
<td>Troubleshooting for the electrical system</td>
</tr>
<tr>
<td>ST18482AA010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22771AA030</td>
<td>SUBARU SELECT MONITOR KIT</td>
<td>Troubleshooting for the electrical system</td>
</tr>
<tr>
<td>ST22771AA030</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. GENERAL TOOL

<table>
<thead>
<tr>
<th>TOOL NAME</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit tester</td>
<td>Used for measuring resistance, voltage and current.</td>
</tr>
<tr>
<td>Pressure gauge</td>
<td>Used for measuring oil pressure.</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>Used for measuring the sensor.</td>
</tr>
</tbody>
</table>
2. VDC Control Module and Hydraulic Control Unit (VDCCM&H/U)

A: REMOVAL
1) Disconnect the ground cable from battery.
2) Use compressed air to remove moisture and dust around the VDCCM&H/U.
NOTE:
If the terminals become dirty, it may cause improper contact.
3) Disconnect the pressure sensor connector.
4) Lift the lock lever and Disconnect the VDC-CM&H/U connector.
CAUTION:
Do not pull on the harness when disconnecting the connector.
5) Disconnect the brake pipes from the VDC-CM&H/U.
6) Wrap the brake pipe with a vinyl bag so as not to spill the brake fluid on the vehicle body.
CAUTION:
If brake fluid is spilled on the vehicle body, wash it off immediately with water and wipe clean.
7) Remove the clips, and then remove the VDC-CM&H/U.

B: INSTALLATION
1) Install the VDCCM&H/U bracket.
Tightening torque:
33 N·m (3.3 kgf-m, 24 ft-lb)
2) Install the VDCCM&H/U to the bracket.
3) Install the clip.
NOTE:
Hook the clip on the claw of the bracket securely.
4) Connect the brake pipes to their correct VDC-CM&H/U positions.

Tightening torque:
<Ref. to BR-7, FRONT BRAKE PIPES AND HOSES, COMPONENT, General Description.>

5) Connect the VDCCM&H/U connector.

NOTE:
- Be sure to remove all foreign matter from inside the connector before connecting.
- Make sure the VDCCM&H/U connector is securely locked.

6) Connect the pressure sensor connector.
7) Bleed air from the brake system.

C: INSPECTION

1) Check the condition of connection and settlement of connector.
2) Check the mark used for VDCCM&H/U identification.

Refer to "SPECIFICATION" for the identification mark. *<Ref. to VDC-2, SPECIFICATION, General Description.>*

1. **CHECKING THE HYDRAULIC UNIT ABS OPERATION BY PRESSURE GAUGE**

<Ref. to ABS-7, CHECKING THE HYDRAULIC UNIT ABS OPERATION BY PRESSURE GAUGE, INSPECTION, ABS Control Module and Hydraulic Control Unit (ABSCM&H/U).>

2. **CHECKING THE HYDRAULIC UNIT ABS OPERATION WITH THE BRAKE TESTER**

<Ref. to ABS-8, CHECKING THE HYDRAULIC UNIT ABS OPERATION WITH THE BRAKE TESTER, INSPECTION, ABS Control Module and Hydraulic Control Unit (ABSCM&H/U).>

3. **CHECKING THE HYDRAULIC UNIT VDC OPERATION USING A PRESSURE GAUGE**

1) Lift up the vehicle, and remove the wheels.
2) Remove the air bleeder screws from FL and FR caliper bodies.
3) Connect two pressure gauges to FL and FR caliper bodies.

CAUTION:
- Use a pressure gauge used exclusively for brake fluid measurement.
- Do not use a pressure gauge used for the measuring transmission oil pressure, as the piston seal may expand and deform.

NOTE:
Wrap sealing tape around the pressure gauge.

<table>
<thead>
<tr>
<th>Front wheel</th>
<th>Rear wheel</th>
</tr>
</thead>
<tbody>
<tr>
<td>When pressurized</td>
<td>When depresurized</td>
</tr>
<tr>
<td>3,000 kPa (31 kgf/cm², 441 psi) or more</td>
<td>500 kPa (5 kgf/cm², 73 psi) or less</td>
</tr>
<tr>
<td>3,000 kPa (31 kgf/cm², 441 psi) or more</td>
<td>500 kPa (5 kgf/cm², 73 psi) or less</td>
</tr>
</tbody>
</table>

8) Disconnect the pressure gauges from FL and FR caliper bodies.
9) Install the air bleeder screws of FL and FR caliper bodies.
10) Remove the air bleeder screws from FL and FR caliper bodies.
11) Connect two pressure gauges to RL and RR caliper bodies.
12) Bleed air from RL and RR caliper bodies, and pressure gauge.
13) Perform VDC sequence control.

<Ref. to VDC-11, VDC Sequence Control.>

C: INSPECTION

1) Check the condition of connection and settlement of connector.

2) Check the mark used for VDCCM&H/U identification.

Refer to "SPECIFICATION" for the identification mark. *<Ref. to VDC-2, SPECIFICATION, General Description.>*
When the hydraulic unit begins to work, first the RR side performs compression, hold, and decompression, and then the RL side performs compression, hold, and decompression. Read the values indicated on the pressure gauges and check if it is within specification. Depress the brake pedal and check that it is not abnormally hard, and tightness is normal. Disconnect the pressure gauge from the RL and RR caliper bodies. Install the air bleeder screws of RL and RR caliper bodies. Bleed air from the brake line.

4. CHECK HYDRAULIC UNIT VDC OPERATION WITH BRAKE TESTER

1) Set wheels other than the one to measure free rollers.
2) Prepare to operate the VDC sequence control. <Ref. to VDC-11, VDC Sequence Control.>
3) Set the front wheels or rear wheels on the brake tester and set the select lever position to the “N” range.
4) Operate the brake tester.
5) Perform VDC sequence control. <Ref. to VDC-11, VDC Sequence Control.>
6) When the hydraulic unit begins to work, check the following work sequence.
 (1) The FL wheel performs compression, hold and decompression in sequence, and subsequently the FR wheel repeats the cycle.
 (2) The RR wheel performs compression, hold and decompression in sequence, and subsequently the RL wheel repeats the cycle.
7) Read values indicated on the brake tester and check if the fluctuation of the values between decompression and compression meets specification.

8) After the inspection, depress the brake pedal and check that it is not abnormally hard, and tightness is normal.

D: ADJUSTMENT

When the following replacement, removal and installation are performed, be sure to perform the centering of the steering angle sensor and zero point setting of yaw rate & lateral G sensor.
- VDCCM&H/U
- Steering angle sensor
- Yaw rate & lateral G sensor
- Steering wheel parts (Including airbag)
- Suspension parts
- Wheel alignment adjustment
1) Park the vehicle straight on a level surface. (Engine operation in the “P” or “N” range)
2) Check that steering wheel is positioned at the center. (When the center position is not correct, adjust the wheel alignment.)
3) Set the Subaru Select Monitor to the vehicle, and select {Set up mode for Neutral of Steering Angle Sensor & Lateral G Sensor 0 point} in the “Function check sequence” screen. (Follow the steps on the display.)
4) On the “Brake Control System” display screen, select [Current Data Display & Save], and check that the steering angle sensor shows “0 deg”.
5) When the “0 deg” is not displayed, repeat the above steps and check that the “0 deg” is displayed.
6) Drive the vehicle for 10 minutes, and check that the ABS and VDC warning light is not illuminated.
7) Check that there is no unnecessary VDC operation or steering control loss. If there is a problem, repeat the steps above.

<table>
<thead>
<tr>
<th>When pressurized</th>
<th>Front wheel</th>
<th>Rear wheel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000 N (203 kgf, 447 lb) or more</td>
<td>2,000 N (203 kgf, 447 lb) or more</td>
<td></td>
</tr>
<tr>
<td>500 N (51 kgf, 112 lb) or less</td>
<td>500 N (51 kgf, 112 lb) or less</td>
<td></td>
</tr>
</tbody>
</table>

ABS00136
ABS00137

(1) Brake tester
3. ABS Sequence Control

A: OPERATION
<Ref. to ABS-10, OPERATION, ABS Sequence Control.>

1. ABS SEQUENCE CONTROL WITH SUBARU SELECT MONITOR
<Ref. to ABS-10, ABS SEQUENCE CONTROL WITH SUBARU SELECT MONITOR, OPERATION, ABS Sequence Control.>

2. CONDITIONS FOR ABS SEQUENCE CONTROL
<Ref. to ABS-11, CONDITIONS FOR ABS SEQUENCE CONTROL, OPERATION, ABS Sequence Control.>

B: SPECIFICATION

1. CONDITIONS FOR COMPLETION OF ABS SEQUENCE CONTROL
<Ref. to ABS-12, CONDITIONS FOR COMPLETION OF ABS SEQUENCE CONTROL, SPECIFICATION, ABS Sequence Control.>
4. VDC Sequence Control

A: OPERATION

1) While the VDC sequence control is performed, the operation of the hydraulic unit can be checked using the brake tester or pressure gauge after the hydraulic unit solenoid valve is operated.
2) VDC sequence control can be started by Subaru Select Monitor.

1. VDC SEQUENCE CONTROL WITH SUBARU SELECT MONITOR

NOTE:
In the event of any trouble, sequence control will not operate.

1) Connect the Subaru Select Monitor to data link connector under the driver’s side instrument panel lower cover.
2) Turn the ignition switch to ON.
3) Set the Subaru Select Monitor switch to ON.
4) Set the Subaru Select Monitor to “Brake Control” mode.
5) When the “VDC Inspection Mode” is selected from the “Function check sequence” menu, the “VDC sequence control” will start.
6) “Press the [YES] key” will be displayed. Press the YES key.
7) Operation points will be displayed on Subaru Select Monitor.
2. CONDITIONS FOR VDC SEQUENCE CONTROL

V max < 4 km/h (2.5 MPH)

V max < 10 km/h (6 MPH)

VDC Sequence Control

VEHICLE DYNAMICS CONTROL (VDC)

VDC-12
VDC Sequence Control

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Operation Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All wheel speed</td>
<td>1 second</td>
</tr>
<tr>
<td>2</td>
<td>Ignition key</td>
<td>1.6 seconds</td>
</tr>
<tr>
<td>3</td>
<td>ABS warning light</td>
<td>Point A</td>
</tr>
<tr>
<td>4</td>
<td>VDC warning light</td>
<td>Reset</td>
</tr>
<tr>
<td>5</td>
<td>Stop light switch</td>
<td>0.8 seconds</td>
</tr>
<tr>
<td>6</td>
<td>Valve relay</td>
<td>1.2 seconds</td>
</tr>
<tr>
<td>7</td>
<td>VDC switching valve 1 FL</td>
<td>0.4 seconds</td>
</tr>
<tr>
<td>8</td>
<td>VDC switching valve 1 FR</td>
<td>Master cylinder pressure</td>
</tr>
<tr>
<td>9</td>
<td>VDC switching valve 2 FL</td>
<td>FR wheel cylinder pressure</td>
</tr>
<tr>
<td>10</td>
<td>VDC switching valve 2 FR</td>
<td>RR wheel cylinder pressure</td>
</tr>
<tr>
<td>11</td>
<td>FL decompression valve</td>
<td>Light OFF</td>
</tr>
<tr>
<td>12</td>
<td>FL compression valve</td>
<td>Light ON</td>
</tr>
<tr>
<td>13</td>
<td>FR decompression valve</td>
<td>1.5 seconds</td>
</tr>
<tr>
<td>14</td>
<td>FR compression valve</td>
<td>1.6 seconds</td>
</tr>
<tr>
<td>15</td>
<td>RR decompression valve</td>
<td>0.8 seconds</td>
</tr>
<tr>
<td>16</td>
<td>RR compression valve</td>
<td>Reset</td>
</tr>
<tr>
<td>17</td>
<td>RL decompression valve</td>
<td>0.8 seconds</td>
</tr>
<tr>
<td>18</td>
<td>RL compression valve</td>
<td>1.2 seconds</td>
</tr>
<tr>
<td>19</td>
<td>Pump motor</td>
<td>0.4 seconds</td>
</tr>
<tr>
<td>20</td>
<td>VDC switching valve 1 FR</td>
<td>Master cylinder pressure</td>
</tr>
<tr>
<td>21</td>
<td>VDC switching valve 2 FL</td>
<td>FR wheel cylinder pressure</td>
</tr>
<tr>
<td>22</td>
<td>Light OFF</td>
<td>RR wheel cylinder pressure</td>
</tr>
<tr>
<td>23</td>
<td>Light ON</td>
<td>RR wheel cylinder pressure</td>
</tr>
<tr>
<td>24</td>
<td>FL compression valve</td>
<td>3.4 seconds</td>
</tr>
<tr>
<td>25</td>
<td>Master cylinder pressure</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Stop light switch</td>
<td>1.6 seconds</td>
</tr>
<tr>
<td>27</td>
<td>Valve relay</td>
<td>1.2 seconds</td>
</tr>
<tr>
<td>28</td>
<td>VDC switching valve 1 FL</td>
<td>0.4 seconds</td>
</tr>
<tr>
<td>29</td>
<td>VDC switching valve 1 FR</td>
<td>Master cylinder pressure</td>
</tr>
<tr>
<td>30</td>
<td>VDC switching valve 2 FL</td>
<td>FR wheel cylinder pressure</td>
</tr>
<tr>
<td>31</td>
<td>Light OFF</td>
<td>RR wheel cylinder pressure</td>
</tr>
<tr>
<td>32</td>
<td>Light ON</td>
<td>RR wheel cylinder pressure</td>
</tr>
<tr>
<td>33</td>
<td>FL decompression valve</td>
<td>3.4 seconds</td>
</tr>
<tr>
<td>34</td>
<td>Valve relay</td>
<td>1.2 seconds</td>
</tr>
<tr>
<td>35</td>
<td>VDC switching valve 1 FL</td>
<td>0.4 seconds</td>
</tr>
<tr>
<td>36</td>
<td>VDC switching valve 1 FR</td>
<td>Master cylinder pressure</td>
</tr>
<tr>
<td>37</td>
<td>VDC switching valve 2 FL</td>
<td>FR wheel cylinder pressure</td>
</tr>
<tr>
<td>38</td>
<td>Light OFF</td>
<td>RR wheel cylinder pressure</td>
</tr>
<tr>
<td>39</td>
<td>Light ON</td>
<td>RR wheel cylinder pressure</td>
</tr>
<tr>
<td>40</td>
<td>FL decompression valve</td>
<td>3.4 seconds</td>
</tr>
</tbody>
</table>

NOTE:
The control operation starts from point A.

B: SPECIFICATION

1. **CONDITIONS FOR COMPLETION OF VDC SEQUENCE CONTROL**

When the following conditions develop, the VDC sequence control stops and VDC operation is returned to the normal control mode.

1. When the speed of at least one wheel reaches 10 km/h (6 MPH).
2. When the brake pedal is pressed during sequence control and the stop light switch is set to ON.
3. After completion of VDC sequence control.
4. When a malfunction is detected.
5. Yaw Rate and Lateral G Sensor

A: REMOVAL
1) Disconnect the ground cable from battery.
2) Remove the console box.
<Ref. to EI-52, Console Box.>
3) Disconnect the connector from yaw rate & lateral G sensor.
4) Remove the yaw rate & lateral G sensor.

CAUTION:
Do not drop or bump the yaw rate & lateral G sensor.

B: INSTALLATION
Install in the reverse order of removal.

NOTE:
Install with the arrow on the yaw rate & lateral G sensor pointed towards the front of the vehicle.

Tightening torque:
7.5 N·m (0.76 kgf·m, 5.5 ft·lb)

CAUTION:
After completion of installation, set the following two positions.
• Positioning to the center of steering angle sensor
• Positioning the yaw rate & lateral G sensors to zero.

The above procedure is required VDCCM&H/U to identify the vehicle position afterward. For the setting procedures of the 2 steps above, refer to “VDC Control Module and Hydraulic Control Unit (VDCCM&H/U)”. <Ref. to VDC-9, ADJUSTMENT, VDC Control Module and Hydraulic Control Unit (VDCCM&H/U).>
C: INSPECTION

1. YAW RATE & LATERAL G SENSOR

<table>
<thead>
<tr>
<th>Step</th>
<th>Check</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| 1 | CHECK YAW RATE & LATERAL G SENSOR.
 1) Turn the ignition switch to OFF.
 2) Connect the Subaru Select Monitor connector to the data link connector.
 3) Turn the ignition switch to ON.
 4) Set the Subaru Select Monitor connector to the {Brake Control} mode.
 5) Select {Current Data Display & Save}.
 6) Read the output voltage of yaw rate & lateral G sensor. | Are the indicated values when the vehicle is placed horizontally, Lateral G sensor: –1.5 — 1.5 m/s, Yaw rate sensor: –4 — 4 deg/s? | Go to step 2. | Repair the harness connector between yaw rate & lateral G sensor and VDCCM&H/U. Or replace the yaw rate & lateral G sensor. |
| 2 | CHECK LATERAL G SENSOR.
 1) Remove the console box.
 2) Remove the yaw rate & lateral G sensors from vehicle. (Do not disconnect the connector.)
 3) Read the display of Subaru Select Monitor.
 NOTE: When the yaw rate & lateral G sensor is moved with its power supply on, DTC of yaw rate & lateral G sensor may be recorded. | Is the value 6.8 — 12.8 m/s when the yaw rate & lateral G sensor is inclined 90° to the right? | Go to step 3. | Repair the harness connector between yaw rate & lateral G sensor and VDCCM&H/U. Or replace the yaw rate & lateral G sensor. |
| 3 | CHECK LATERAL G SENSOR.
 Read the display of Subaru Select Monitor.
 NOTE: When the yaw rate & lateral G sensor is moved with its power supply on, DTC of yaw rate & lateral G sensor may be recorded. | Is the value 6.8 — 12.8 m/s when the yaw rate & lateral G sensor is inclined 90° to the right? | Yaw rate & lateral G sensors are normal. | Repair the harness connector between yaw rate & lateral G sensor and VDCCM&H/U. Or replace the yaw rate & lateral G sensor. |
6. Steering Angle Sensor

A: REPLACEMENT

CAUTION:
- Do not perform the removal except when the replacement.
- When replacing more than three times, replace the combination switch as assembly to protect the threads.

1) Set the steering wheel in a straight-ahead position.
2) Disconnect the ground cable from battery.
3) Remove the airbag module.
 <Ref. to AB-17, REMOVAL, Driver's Airbag Module.>

WARNING:
Always refer to “Airbag System” when performing the airbag module repair service.
<Ref. to AB-6, CAUTION, General Description.>

4) Remove the steering wheel.
 <Ref. to PS-14, REMOVAL, Steering Wheel.>
5) Remove the screws and remove the steering column lower cover.
6) Remove the two screws securing the steering column upper cover.
7) Unlock the harness band and disconnect the connector of the steering angle sensor.

8) Remove the screws which secure the roll connector to steering column.

9) Remove the steering angle sensor from roll connector.

10) Turn the protrusion portion of new steering angle sensor to match the alignment mark of inspection hole.

CAUTION:
Be careful not to allow foreign matter to enter into inspection hole.

11) Align the center of roll connector.
 <Ref. to AB-26, INSTALLATION, Roll Connector.>
12) Apply a thin coat of grease that is supplied with the new part, to the 4 protruding sections of the steering angle sensor.
13) Align the position of the protrusion and install roll connector to steering angle sensor.

Tightening torque:

\[0.5 \text{ N-m (0.05 kgf-m, 0.36 ft-lb)} \]

14) Install the roll connector to combination switch.

15) Install the steering wheel.

<Ref. to PS-14, INSTALLATION, Steering Wheel.>

Tightening torque:

\[44 \text{ N-m (4.5 kgf-m, 32.5 ft-lb)} \]

16) Install the airbag module to the steering wheel.

<Ref. to AB-17, INSTALLATION, Driver’s Airbag Module.>

WARNING:

Always refer to “Airbag System” before performing the service operation.

<Ref. to AB-6, CAUTION, General Description.>

17) Connect the ground cable to battery.

CAUTION:

After completion of installation, adjust the following two positions.

- Positioning to the center of steering angle sensor
- Positioning the yaw rate & lateral G sensors to zero.

The above procedure is required for the VDC-CM to identify vehicle position afterward. For the setting procedures of the 2 steps above, refer to “VDC Control Module and Hydraulic Control Unit (VDCCM&H/U)”. <Ref. to VDC-9, ADJUSTMENT, VDC Control Module and Hydraulic Control Unit (VDCCM&H/U).>
7. Front ABS Wheel Speed Sensor

A: NOTE
Vehicles equipped with VDC have the same ABS wheel speed sensor as installed on vehicles equipped with ABS. Refer to “Front ABS Wheel Speed Sensor” for removal, installation and inspection procedures.
<Ref. to ABS-13, Front ABS Wheel Speed Sensor.>
8. Rear ABS Wheel Speed Sensor

A: NOTE
Vehicles equipped with VDC have the same ABS wheel speed sensor as installed on vehicles equipped with ABS. Refer to “Rear ABS Wheel Speed Sensor” for removal, installation and inspection procedures.
<Ref. to ABS-15, Rear ABS Wheel Speed Sensor.>
Front Magnetic Encoder

VEHICLE DYNAMICS CONTROL (VDC)

9. Front Magnetic Encoder

A: NOTE
Vehicles equipped with VDC have the same magnetic encoder as installed on vehicles equipped with ABS. Refer to "Front Magnetic Encoder" for removal, installation and inspection procedures.
<Ref. to ABS-16, Front Magnetic Encoder.>
Rear Magnetic Encoder

10. Rear Magnetic Encoder

A: NOTE
Vehicles equipped with VDC have the same magnetic encoder as installed on vehicles equipped with ABS. Refer to "Rear Magnetic Encoder" for removal, installation and inspection procedures.
<Ref. to ABS-17, Rear Magnetic Encoder.>
11. VDC OFF Switch

A: REMOVAL
1) Remove the instrument panel lower cover.
2) Remove the screws, and then remove the VDC OFF switch.

B: INSTALLATION
Install in the reverse order of removal.

C: INSPECTION
Measure the resistance between the VDC OFF switch terminals.

<table>
<thead>
<tr>
<th>Switch position</th>
<th>Terminal No.</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>2 — 15</td>
<td>1 MΩ or more</td>
</tr>
<tr>
<td>ON</td>
<td>2 — 15</td>
<td>Less than 1 Ω</td>
</tr>
</tbody>
</table>

If NG, replace the VDC OFF switch.